Universal dynamical decoupling of multiqubit states from environment
نویسندگان
چکیده
We study the dynamical decoupling of multiqubit states from environment. For a system of m qubits, the nested Uhrig dynamical decoupling (NUDD) sequence can efficiently suppress generic decoherence induced by the system-environment interaction to order N using (N + 1)2m pulses. We prove that the NUDD sequence is universal, i.e., it can restore the coherence of an m-qubit quantum system independent of the details of the system-environment interaction. We also construct a general mapping between dynamical decoupling problems and discrete quantum walks in certain functional spaces.
منابع مشابه
Rigorous bounds on the performance of a hybrid dynamical-decoupling quantum-computing scheme
We study dynamical decoupling in a multiqubit setting, where it is combined with quantum logic gates. This is illustrated in terms of computation using Heisenberg interactions only, where global decoupling pulses commute with the computation. We derive a rigorous error bound on the trace distance or fidelity between the desired computational state and the actual time-evolved state, for a system...
متن کاملHigh fidelity quantum gates via dynamical decoupling.
Realizing the theoretical promise of quantum computers will require overcoming decoherence. Here we demonstrate numerically that high fidelity quantum gates are possible within a framework of quantum dynamical decoupling. Orders of magnitude improvement in the fidelities of a universal set of quantum gates, relative to unprotected evolution, is achieved over a broad range of system-environment ...
متن کاملRigorous performance bounds for quadratic and nested dynamical decoupling
We present rigorous performance bounds for the quadratic dynamical decoupling pulse sequence which protects a qubit from general decoherence, and for its nested generalization to an arbitrary number of qubits. Our bounds apply under the assumptions of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in...
متن کاملPreservation of bipartite pseudoentanglement in solids using dynamical decoupling.
A crucial challenge for future quantum technologies is to protect fragile entanglement against environment-induced decoherence. Here we demonstrate experimentally that dynamical decoupling can preserve bipartite pseudoentanglement in phosphorous donors in a silicon system. In particular, the lifetime of pseudoentangled states is extended from 0.4 μs in the absence of decoherence control to 30 ...
متن کاملDynamical generation of noiseless quantum subsystems
We combine dynamical decoupling and universal control methods for open quantum systems with coding procedures. By exploiting a general algebraic approach, we show how appropriate encodings of quantum states result in obtaining universal control over dynamically generated noise-protected subsystems with limited control resources. In particular, we provide a constructive scheme based on two-body ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011